Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter G. Jones,* Christine Kunze, Holger Thönnessen and Reinhard Schmutzler

Institut für Anorganische und Analytische
Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Correspondence e-mail:
jones@xray36.anchem.nat.tu-bs.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.035$
$w R$ factor $=0.083$
Data-to-parameter ratio $=16.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Chloro-1,3-dioxa-2 $\sigma^{3} \lambda^{3}$-phosphaanthracen-4-one

The molecule of the title compound, $\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{ClO}_{3} \mathrm{P}$, is essentially planar, except for the P, Cl and carbonyl O atoms. Bond lengths at phosphorus are $\mathrm{P}-\mathrm{O}=1.6110$ (18) and 1.6290 (18) \AA, and $\mathrm{P}-\mathrm{Cl}=2.0890$ (9) \AA. The molecules are linked to form ribbons parallel to the b axis by two $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and one $\mathrm{P} \cdots \mathrm{O}$ interaction.

Comment

The title compound, (I), was obtained as a synthetic intermediate en route to phosphorus-substituted calix[4]arenes (Kunze, 2002; Kunze et al., 2002).

(I)

The structure of (I) is shown in Fig. 1. Bond lengths and angles may be considered normal (Table 1). All non-H atoms, except P, Cl and O 3 , are coplanar (r.m.s. deviation $0.028 \AA$); these three atoms lie 0.491 (1), 2.525 (1) and -0.256 (2) \AA, respectively, out of the mean plane (the minus sign indicating the opposite side of the plane).

The molecular packing involves three contacts, namely two 'weak' $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) and a $\mathrm{P} \cdots \mathrm{O} 3$ contact of 3.072 (2) \AA (operator of O3: $-x+2, y-\frac{1}{2},-z+\frac{1}{2}$). The overall effect of these is to link the molecules in ribbons parallel to the b axis (Fig. 2). The $\mathrm{Cl} \cdots \mathrm{Cl}$ contact between ribbons is, at 3.897 (1) \AA (operator $x+\frac{1}{2},-y+\frac{1}{2},-z$), probably too long to be regarded as significant.

The structure of an isomeric material is presented in the following paper (Jones et al., 2002).

Experimental

The title compound was prepared by the reaction of 3-hydroxy-naphthalene-2-carboxylic acid with phosphorus trichloride in toluene (Hoechst, 1966) and recrystallized from dichloromethane/diethyl ether (2:1 v/v) (Kunze, 2002).

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{ClO}_{3} \mathrm{P}$	Mo $K \alpha$ radiation
$M_{r}=252.58$	Cell parameters from 56
Orthorhombic, $P_{2} 2_{1} 2_{1} 2_{1}$	reflections
$a=6.0031(15) \AA \AA \AA=10-11.5^{\circ}$	
$b=10.0697(15) \AA$	$\mu=0.51 \mathrm{~mm}^{-1}$
$c=17.028(3) \AA$	$T=173(2) \mathrm{K}$
$V=1029.3(4) \AA^{3}$	Prism, colourless
$Z=4$	$0.5 \times 0.3 \times 0.2 \mathrm{~mm}$
$D_{x}=1.630 \mathrm{Mg} \mathrm{m}^{-3}$	

Mo $K \alpha$ radiation
Cell parameters from 56 reflections
$\theta=10-11.5^{\circ}$
$\mu=0.51 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Prism, colourless $0.5 \times 0.3 \times 0.2 \mathrm{~mm}$

Received 11 November 2002 Accepted 19 November 2002 Online 30 November 2002

Data collection

Stoe Stadi-4 diffractometer ω / θ scans
Absorption correction: none
3936 measured reflections
2367 independent reflections 2114 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.083$
$S=1.06$
2367 reflections
145 parameters
H -atom parameters constrained

$$
\begin{aligned}
& \theta_{\max }=27.5^{\circ} \\
& h=-7 \rightarrow 3 \\
& k=-13 \rightarrow 0 \\
& l=-22 \rightarrow 22
\end{aligned}
$$

3 standard reflections frequency: 90 min intensity decay: none
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0289 P)^{2}\right.$ $+0.1959 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.22 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.26 \mathrm{e} \AA^{-3}$
Absolute structure: Flack (1983),
974 Friedel pairs
Flack parameter $=-0.03(10)$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{P}-\mathrm{O} 1$	$1.6110(18)$	$\mathrm{P}-\mathrm{Cl}$	$2.0890(9)$
$\mathrm{P}-\mathrm{O} 2$	$1.6290(18)$		
$\mathrm{O} 1-\mathrm{P}-\mathrm{O} 2$	$100.95(9)$	$\mathrm{C} 3-\mathrm{O} 1-\mathrm{P}$	$123.43(16)$
$\mathrm{O} 1-\mathrm{P}-\mathrm{Cl}$	$100.21(7)$	$\mathrm{C} 11-\mathrm{O} 2-\mathrm{P}$	$127.24(15)$
$\mathrm{O} 2-\mathrm{P}-\mathrm{Cl}$	$98.33(7)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C}^{2}-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.95	2.60	$3.542(3)$	174
$\mathrm{C}^{\mathrm{i}}-\mathrm{H} 8 \cdots \mathrm{O}^{\mathrm{i}}$	0.95	2.56	$3.484(3)$	164

Symmetry code: (i) $2-x, \frac{1}{2}+y, \frac{1}{2}-z$.
The absolute structure was determined on the basis of 974 Friedel pairs. The bulk material is racemic, so that the concept of absolute configuration can only be applicable to the measured crystal. H atoms were included using a riding model with fixed $\mathrm{C}-\mathrm{H}$ bond lengths of $0.95 \AA ; U_{\text {iso }}(\mathrm{H})$ values were fixed at 1.2 times the $U_{\text {eq }}$ value of the parent atom.

Data collection: DIF4 (Stoe \& Cie, 1992); cell refinement: DIF4; data reduction: REDU4 (Stoe \& Cie, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Financial support from the Fonds der Chemischen Industrie is gratefully acknowledged. We thank Mr A. Weinkauf for technical assistance.

Figure 1
The molecule of the title compound in the crystal. Displacement ellipsoids are drawn at the 30% probability level. H -atom radii are arbitrary.

Figure 2
Packing diagram of the title compound, viewed parallel to the a axis. Secondary interactions are indicated by dashed bonds.

References

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Hoechst (1966). Belg. Patent No. 667036, Farbwerke Hoechst AG; Chem. Abstr. (1966), 65, 13741d.
Jones, P. G., Kunze, C., Freytag, M. \& Schmutzler, R. (2002). Acta Cryst. E58, o1434-o1435.
Kunze, C. (2002). PhD Thesis, Technical University of Braunschweig, Germany. [ISBN 3-89720-612-9]
Kunze, C., Selent, D., Neda, I., Freytag, M., Jones, P. G., Schmutzler, R., Baumann, W. \& Börner, A. (2002). Z. Anorg. Allg. Chem. 628, 779-787.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Stoe \& Cie (1992). DIF4 and REDU4. Stoe \& Cie, Darmstadt, Germany.

